EM530

Energieanalysator für Dreiphasen- und Zweiphasensysteme

Beschreibung

Der EM530 ist ein Energieanalysator, der über 5 A Stromwandler angeschlossen wird, für Zwei- und Dreiphasensysteme bis zu 415 V L-L. Zusätzlich zu einem digitalen Eingang kann die Einheit je nach Modell mit einem statischen Ausgang (Impuls oder Alarm), einem Modbus- RTU-Kommunikationsport oder einem M- Bus-Kommunikationsport ausgestattet werden.

Vorteile

- Verbesserte Ablesbarkeit. Die Hintergrundbeleuchtung des Displays stellt perfekte Sichtbarkeit selbst in schwachen Lichtverhältnissen sicher. Die unterschiedliche Größe der Ziffern vor und nach dem Dezimalpunkt erleichtert das Ablesen der angezeigten Werte, während der wesentliche Stil der Maßeinheiten Ihnen ein leichtes Verständnis der verfügbaren Messgrößen ermöglicht.
- Einfaches Browsen. Das Einrichten und Browsen der Seiten sind sehr intuitiv dank der Benutzerschnittstelle mit 3 mechanischen Drucktasten. Die Slideshow-Funktion zeigt automatisch die gewünschten Messungen in Folge an, ohne dass das Tastenfeld benutzt werden müsste; der Seitenfilter erlaubt Ihnen, unnötige Information zu auszublenden.
- Schnelle Konfiguration. Der Konfigurationsassistent, der beim allerersten Systemstart läuft, erlaubt Ihnen, die Einheit ohne Fehler in einigen Sekunden in Dienst zu stellen. Die UCS-Konfigurationssoftware steht kostenlos zum Herunterladen zur Verfügung.
- Genaue Messung. Der EM530 ist mit dem internationalen Genauigkeitsstandard IEC/EN 62053-21 und den in IEC/EN 61557- 12 niedergelegten Leistungsanforderungen (Leistung und Wirkenergie) konform.
- Abrechnungsmessung. Die gleitenden Anschlussabdeckungen (Patent angemeldet in EU, US, CA, AU) können versiegelt werden, um jegliche Manipulation der Anschlüsse zu verhindern, was dank der MID-Zertifikation der Einheit erlaubt, Messungen für Abrechnungszwecke durchzuführen, und für einen verstärkten Schutz an den Stromanschlüssen sorgt.
- Flexible Installation. Er kann in Niederspannungssystemen mit zwei Phasen, drei Phasen mit Neutral, drei Phasen ohne Neutral und Wild-Leg-Dreiphasen-Konfiguration installiert werden.
- Leistungsstarke Integration In Kombination mit UWP (einem Energie- Überwachungs- und Steuerungsgateway, hergestellt von Carlo Gavazzi) erlaubt er Ihnen, ein skalierbares und flexibles System zur Überwachung der Energieeffizienz von Gebäuden und Anlagen aufzubauen.

Anwendungen

Der EM530 kann in einer beliebigen Niederspannungsschaltanlage zur Überwachung des Energieverbrauchs, der elektrischen Hauptgrößen und der harmonischen Verzerrung eingebaut werden. Kompatibel mit jeglichem Stromwandler mit 5 A Sekundärstrom kann er in Systemen mit einem Nennstrom bis zu 10 kA installiert werden, sogar in Nachrüstanwendungen, wenn er zusammen mit öffenbaren Transformatoren wie CTA oder CTD S benutzt wird.

Bei Überwachung einer einzelnen Maschine stellt er alle hauptsächlichen elektrischen Messgrößen zum frühzeitigen Erkennen jeglicher Fehlfunktion bereit und kann den Energieverbrauch mit den Betriebszeiten korrelieren, um Wartung zu planen und Störungen zu verhindern. Die partielle Zähler-Rücksetzfunktion ist

2

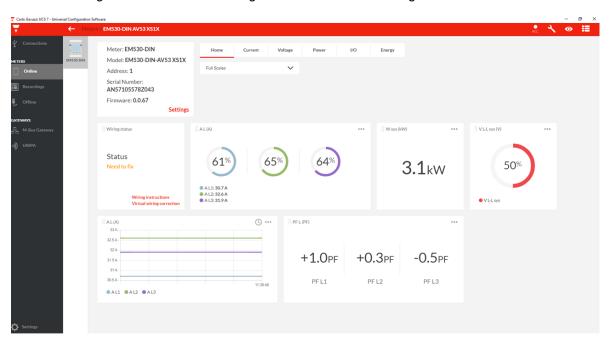
einfach zu implementieren mithilfe eines Digitaleingangs und erlaubt Ihnen, jeden individuellen Maschinenzyklus zu überwachen.

Die MID-zertifizierte Version kann für Abrechnungsmessungen benutzt und in bewohnten oder kommerziellen Gebäuden zum Aufteilen der Kosten unter den verschiedenen Einheiten installiert werden, oder als eine Komponente von Maschinen oder Anlagen, die zertifizierte Messungen erfordern.

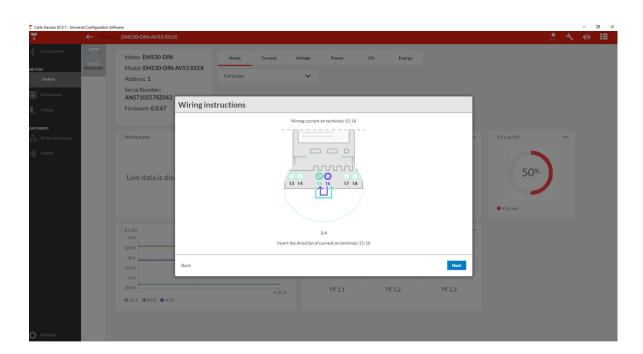
Dank der Messwiederholzeit und der hohen Auflösung der durch einen Modbus RTU Kommunikationsmodul

Hauptfunktionen

- · Messung der Wirk-, Blind- und Scheinenergie
- · Messung der hauptsächlichen elektrischen Messgrößen
- Messung der Lastbetriebsstunden und der Analysatorbetriebsstunden
- Messung der gesamten harmonischen Verzerrung (THD) von Strom und Spannungen
- Datenübertragung an andere Systeme über Modbus RTU oder M-Bus
- Verwalten eines Digitalausgangs für Impulse oder Alarmübertragung
- Darstellen der gemessenen Größen auf dem Display


Hauptmerkmale

- System- und Phasenvariablen (V L-L, V L-N, A, W/var, VA, PF, Hz)
- Anzeigen der verbrauchten Wirkenergie mit einer Auflösung von 0,001 kWh
- Der Frequenzwert ist mit einer Auflösung von 0,001 Hz über Modbus verfügbar
- Mittelwertberechnung (dmd) für Strom und Leistung (kW / kVA)
- Optimierte Benutzerschnittstelle mit 3 mechanischen Tasten
- Modbus RTU RS485 (Datenwiederholung alle 100 ms)
- · Kontinuierliche Stichproben jeder Spannung und jedes Stroms
- LCD-Display mit Hinterleuchtung
- MID-zertifizierte Version
- MID-zertifizierte Zählerauflösung 0,001 kWh
- cULus-Zulassung (UL 61010)
- Konform mit den in IEC/EN 61557-12 niedergelegten Leistungsanforderungen (Leistung und Wirkenergie)



UCS-Software

- · Kostenfreier Download von Carlo-Gavazzi-Website
- Konfiguration über RS485 vom PC oder durch UWP über LAN oder das Web (UWP-Secure-Bridge-Funktion)
- Einstellungssätze können für serielle Programmierung mit einem einzelnen Befehl offline gespeichert werden
- Echtzeit-Datenanzeige für Testen und Diagnose
- Meldung möglicher Verkabelungsfehler und Anzeige von Korrekturschritten, Neuzuweisung der korrekten Phasenzuordnungen oder der Stromrichtungen über Softwaresteuerung.

Aufbau



Fig. 1 Frontal

Bereich	Beschreibung
Α	Spannungseingänge
В	Anzeige
С	LED
D	Tasten für Browsen und Konfiguration
E	Digitaleingang, Digitalausgang und Kommunikationsanschlüsse
F	MID-versiegeltes Gehäuse
G	Stromeingänge

6

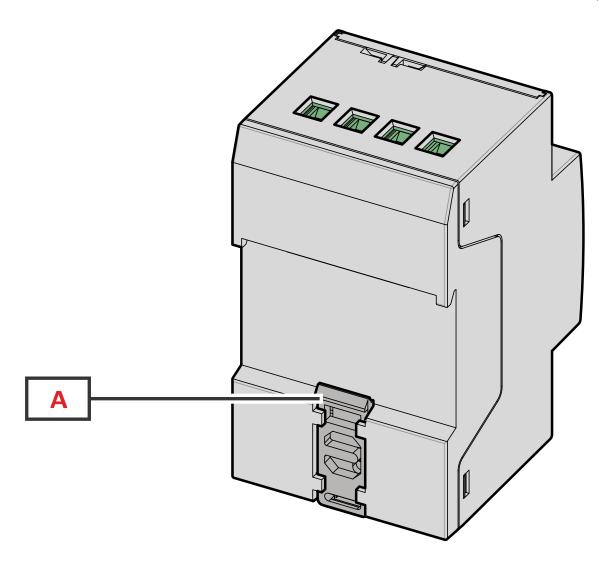


Fig. 2 Rückseite

Bereich	Beschreibung
Α	DIN-Schienenmontage-Halterung

Merkmale

Allgemein

	Cohäuser DDT			
Material	Gehäuse: PBT			
Material	Durchsichtige Abdeckung: Polycarbonat			
Cabutannad	Vorderseite: IP40			
Schutzgrad	Anschlussklemmen: IP20			
	Spannungseingänge: 0,2 bis 2,5 mm²/13 bis 24 AWG, 0,45 Nm/3,98 lb-in max			
Klemmen	Stromeingänge: 0,2 bis 2,5 mm ² /13 bis 24 AWG, 0,45 Nm/3,98 lb-in max			
Kieiiiiieii	Eingänge, Ausgänge und Kommunikation: 0,2 bis 1,5 mm ² /16 bis 24 AWG, 0,4 Nm/3,54 lb-			
	in max			
Überspannungskategorie	Kat. III			
Verschmutzungsgrad	2			
Montage	DIN-Schiene			
Gewicht	280 g/0.62 lb (inkl. Verpackung)			
Abmessungen	3-DIN Module			

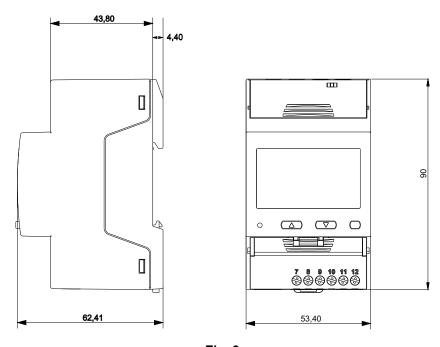


Fig. 3

8

Umgebungsbedingungen

Betriebstemperatur	Von -25 bis +55 °C/von -13 bis +131 °F (MX-Modelle und PFx-Modelle)	
Lagertemperatur	-30 bis +70 °C/ -22 bis +158 °F	

Info: relative Luftfeuchtigkeit < 90 %, nicht kondensierend, bei 40 °C (104 °F)

Isolierung Ein- und Ausgänge

Туре	Messe- ingänge	Digitaleingang	Digitalausgang	Serieller RS485- Port	M-Bus Serieller Port
Messe- ingänge	-	Doppelt/Verstärkt	Doppelt/Verstärkt	Doppelt/Verstärkt	Doppelt/Verstärkt
Digitaleingang	Doppelt/Verstärkt	-	keine	keine	keine
Digitalausgang	Doppelt/Verstärkt	keine	-	-	-
Serieller RS485-Port	Doppelt/Verstärkt	keine	-	-	-
M-Bus Serieller Port	Doppelt/Verstärkt	keine	-	-	-

Gemäß: EN 61010-1, EN IEC 62052-31 (MID). Überspannungs-Kategorie III. Verschmutzungsgrad 2.

Compatibility and conformity

	2014/32/EU (MID)			
Directives	2014/35/EU (LVT - Low Voltage)			
	2014/30/EU (EMC - Electro Magnetic Compatibility)			
	2011/65/EU, 2015/863/EU (Electric-electronic equipment hazardous substances)			
	Electromagnetic compatibility (EMC) - emissions and immunity: EN IEC 62052-11:2021/A11:2022 (Emissions according to CISPR 32:2015, class B)			
Standards	Electrical safety: EN IEC 61010-1, EN IEC 62052-31:2016, EN IEC 61010-2-030			
Standards	Metrology: EN IEC 62053-22, EN IEC 62053-23, EN 50470-3:2022 (MID), EN IEC			
	61557-12 (active power and active energy, MID models only)			
	Durability : EN IEC 62059-32-1:2012			
Approvals	CE			
	C UL US LISTED			
	UK			
	——————————————————————————————————————			

Elektrische Spezifikationen

Elektrisches System			
	Zweiphasen (3 Adern)		
Vamualtataa alaktiisahaa Suotam	Dreiphasig mit Nullleiter (4-drahtig)		
Verwaltetes elektrisches System	Dreiphasig ohne Nullleiter (3-drahtig)		
	Wild-Leg-System (dreiphasig, vieradriges Delta)		
Contaviore alaktriache Anlare MID	Dreiphasig mit Nullleiter (4-drahtig)		
Gesteuerte elektrische Anlage MID	Dreiphasig ohne Nullleiter (3-drahtig) (ARON)		

Spannungseingänge - MID			
Spannungsanschluss	Direkt		
Nennspannung L-N	230 V		
Nennspannung L-L	400 V		
Spannungstoleranz	Von 0,8 bis 1,15 Un		
Überlast	Kontinuierlich: 1,5 Un max.		
Eingangsimpedanz	Siehe "Stromversorgung"		
Frequenz	50 Hz		
Spannungseingänge Nicht-MID-Modelle			
Spannungsanschluss	Direkt		
Nennspannung L-N (Un min bis Un max)	120 bis 240 V		
Nennspannung L-L (Un min bis Un max)	208 bis 415 V		
Spannungstoleranz	Von 0,8 bis 1,15 Un		
Überlast	Kontinuierlich: 1,5 Un max.		
Eingangsimpedanz	Siehe "Stromversorgung"		
Frequenz	Von 45 bis 65 Hz		

Hinweis: Für MID-Versionen ist der Spannungsbereich auf 3x120 (208)...3x230 (400) V und die Frequenz auf 50 Hz begrenzt.

Hinweis: EM530 kann auch in einem Wild-Leg-System (dreiphasig, vieradriges Delta) installiert werden, bei dem eine der Phasen-Nullleiterspannungen höher ist als die beiden anderen.

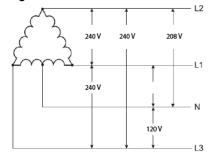


Fig. 4 Zweiphasensystem mit Nullleiter (3-drahtig)

Stromeingänge				
Stromverbindung	Über CT			
Wandlungsverhältnis TA	2000 max			
Nennstrom (In)	5 A			
Minimalstrom (Imin)	0.05 A			
Maximalstrom (Imax)	6 A			
Anlaufstrom (Ist)	10 mA			
Überlast	Für 500 ms: 20 lmax (120 A)			
Eingangsimpedanz	< 0.3 VA			
Scheitelwertfaktor	3			
Messungstyp	durch interne Nebenwiderstände			

Strom- versorgung

Туре	über Messspannung
Verbrauch	< 1,3 W/2,6 VA
Frequenz	50/60 Hz

Messungen

Messmethode	TRMS-Messungen von Wellenverzerrungen
-------------	---------------------------------------

Verfügbare Messungen

Wirkenergie	Einheit	System	Phase
Importiert (+) Total	kWh+	•	•
Importiert (+) partiell	kWh+	•	-
Importiert (+) partiell	kWh-	•	-
Exportiert (-) Partiell	kWh-	•	-
Importiert (+) nach Tarif (t1, t2)	kWh+	•	-

Blindenergie	Einheit	System	Phase
Importiert (+) Total	kvarh+	•	-
Importiert (+) partiell	kvarh+	•	-
Importiert (+) partiell	kvarh-	•	-
Exportiert (-) Partiell	kvarh-	•	-

Scheinenergie	Einheit	System	Phase
Total	kVAh	•	-
Partial	kVAh	•	-

Betriebsstundenzähler	Einheit	System	Phase
Gesamt (kWh+)	hh:mm	•	-
Partiell (kWh+)	hh:mm	•	-
Gesamt (kWh-)	hh:mm -	•	-
Partiell (kWh-)	hh:mm -	•	-
Gesamte aktive Betriebszeit	hh:mm	•	-

Elektrische Größen	Einheit	System	Phase
Spannung L-N	V	•	•
Spannung L-L	V	•	•
Strom	Α	•	•
DMD	Α	-	•
DMD MAX	Α	-	•
Nullleiterstrom	Α	•	-
Wirkleistung	W	•	•
DMD	W	•	-
DMD MAX	W	•	-
Scheinleistung	VA	•	•
DMD	VA	•	-
DMD MAX	VA	•	-
Blindleistung	Var	•	•
Leistungsfaktor	PF	•	•
Frequenz	Hz	•	-
THD Strom*	THD A %	-	•
THD Spannung L-N*	THD L-N %	<u>-</u>	•
THD Spannung L-L*	THD L-L %	-	•

^{*} Bis zur 15. Harmonischen.

Info: Die verfügbaren Variablen hängen vom Typ des festgelegten Systems ab.
Die gesamte importierte Wirkenergie (kWh TOT) ist der einzige MID-zertifizierte Zähler. Schein-, Blind- und exportierte Wirkenergie sind nicht MID-zertifiziert. Teilzähler sind nicht MID-zertifiziert.

Energiemessung

Die Energiemessung hängt von dem von Ihnen gewählten Messungstyp ab (wählbar in nicht-MID-Modellen, vom jeweiligen Modell gegeben in MID-zertifizierten Modellen).

A-Messung (Easy connection)

Modelle: MID PFA

EinfacheAnschlussfunktion: unabhängig von der Stromrichtung hat die Leistung immer ein positives Vorzeichen und trägt zum Zuwachs im positiven Energiezähler bei. Der negative Energiezähler ist nicht verfügbar.

B-Messung (Bidirektional)

Modelle: MID PFB

In jedem Messzeitintervall werden die einzelnen Phasenenergien mit positivem Vorzeichen zum Erhöhen des positiven Energiezählers (kWh+) aufsummiert, während die anderen den negativen Zähler (kWh-) erhöhen.

Beispiel:

P L1= +2 kW, P L2= +2 kW, P L3= -3 kW Integrationszeit = 1 Stunde $kWh+ = (2+2) \times 1h = 4 kWh$ $kWh- = 3 \times 1h = 3kWh$

B-Messung (Net Bidirektional)

Modelle: MID PFC

Für jede Messintervallzeit werden die Energien der einzelnen Phasen aufsummiert; gemäß dem Vorzeichen des Ergebnisses wird der positive (kWh+) oder der negative Zähler (kWh-) erhöht.

Beispiel:

P L1 = +2 kW, P L2 = +2 kW, P L3 = -3 kW Integrationszeit = 1 Stunde kWh+=(+2+2-3)x1h=(+1)x1h=1 kWhkWh-=0 kWh

Messgenauigkeit

Strom		
0,05 In bis Imax	± 0,3% rdg	
0,01 In bis 0,05 In	± 0.6% rdg	

Phase-Phase-Spannung		
Von Un min20 % bis Un max. +15 %	± 0.2% rdg	

Spannung Phase-Neutralleiter		
Von Un min20 % bis Un max. +15 %	± 0.2% rdg	

Wirk- und Scheinleistung	Wirk- und Scheinleistung		
Von 0,05 In bis Imax (PF=1)	± 0.5% rdg		
0,01 In bis 0,05 In (PF=1)	± 1% rdg		
Von 0,1 In bis Imax (PF=0,5L - 0,8C)	± 0.6% rdg		
Von 0,02 In bis 0,1 In (PF=0,5L - 0,8C)	± 1% rdg		
Wirkenergie	Klasse 0.5 S EN 62053-22, Klasse B EN50470-3 (MID)		
Blindenergie	Klasse 2 (EN 62053-23)		

Blindleistung	
Von 0,1 In bis Imax (sinφ=0,5L - 0,5C) 0,05 In bis Imax (sinφ=1)	± 2% rdg
Von 0,05 In bis 0,1 In (sinφ=0,5L - 0,5C) 0,02 In bis 0,05 In (sinφ=1)	± 2.5% rdg
Wirkenergie	Klasse 0.5 S EN 62053-22, Klasse B EN50470-3 (MID)
Blindenergie	Klasse 2 (EN 62053-23)

Frequenz		
Von 45 bis 65 Hz	± 0.1% rdg	

Messgenauigkeit gemäß IEC/EN61557-12 (MID-Versionen)		
Wirkleistung	Leistungsklasse 1	
Wirkenergie	Leistungsklasse 2	

Messauflösung

Messgröße	Display-Auflösung	Auflösung über serielle Kommunikation
Energie	0.001 kWh/kvarh/kVAh	
Einphasenenergie	0,01 kWh	0.001 kWh
Leistung	0.01 kW/kvar/kVA	0.1 W/var/VA
Strom*	0,01 A	0.001 A
Spannung	0.1 V	
Frequenz	0.01 Hz	0.001 Hz
THD	0.01 %	
Leistungsfaktor	0.01	0,001

^{*}Hinweis: Wert bezogen auf das CT-Verhältnis =1

Anzeige

Туре	Segmente	
Aktualisierungszeit	500 ms	
Beschreibung	Hintergrundbeleuchtetes LCD	
	Momentanwert: 5+1-stellig oder 5+2-stellig	
Variablenablesung	Leistungsfaktor: 1+2-stellig	
	Energie: 8+3-stellig	

LED

	Rot Impulsgewicht: proportional zum Energieverbrauch und abhängig von CT-Ver- hältnisses (maximale Frequenz 16 Hz):		
	Gewichtung (kWh pro Impuls	CT-Verhältnis	
Frontal	0,001	≤ 7	
	0.01	7,1 bis 70	
	0.1	70,1 bis 700	
	1	Von 700,1 bis 2000	

Digitalausgänge/-eingänge

Digitaleingänge

Verbindung	Schraubklemmen	
Anzahl der Ausgänge	1	
Туре	Freier Kontakt	
	Remote Status Tarifverwaltung	
Eurotion	Tarifverwaltung	
Function	Partialzähler Start/Stopp	
	Partialzähler zurücksetzen	
	Spannung bei offenem Kontakt: 5 V DC +/- 5 %	
	Strom bei geschlossenem Kontakt: 5 mA max	
Merkmale	Eingangsimpedanz: 11,6 kΩ	
Merkmaie	Widerstand bei offenem Kontakt: ≥ 25 kΩ	
	Widerstand bei geschlossenem Kontakt: ≤ 840 Ω	
	Maximale anlegbare Spannung ohne Schaden: 30 V AC	
Konfigurationsparameter	Eingangsfunktion	
Konfigurationsmodalitäten	Per Keypad oder UCS-Software	

Hinweis: Typ S0, Klasse B gemäß EN 62053-31

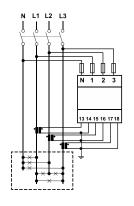
Digitalaus- gänge

Digitalausgang

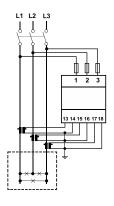
Verbindung	Schraubklemmen
Max. Anzahl Ausgänge	1
Туре	Opto-Mosfet
Function	Impuls- oder Alarmausgang
Merkmale	V _{ON} 2,5 V AC/DC max. 100 mA
Werkindle	V _{OFF} 42 V AC/DC
	Ausgabefunktion (Puls / Alarm)
Konfigurationanarameter	Impulsgewicht (von 0,001 bis 10 kWh pro Impuls)
Konfigurationsparameter	Impulsdauer (30 oder 100 ms)
	Normaler Zustand der Ausgabe (NO oder NC)
Konfigurationsmodalitäten	Per Keypad

Kommunikationsschnittstellen

Modbus RTU


Protokoll	Modbus RTU
Geräte am gleichen Bus	Max 247 (1/8 Einheitsladung)
Kommunikations-Typ	Multidrop, bidirektional
Verbindung	2-drahtig
Konfigurationsparameter	Modbus-Adresse (von 1 bis 247)
	Baudrate (9,6/ 19,2/ 38,4/ 57,6/ 115.2 Kbit/s)
	Parität: (keine / gerade)
	Stop bit (1 oder 2)
Aktualisierungszeit	≤ 100 ms
Konfigurationsmodalitäten	Per Keypad oder UCS-Software

M-Bus


Protokoll	M-Bus gemäß EN13757-3:2013
Geräte am gleichen Bus	Max 250 (1 Einheitslast)
Verbindung	2-drahtig
Konfigurationsparameter	Primäradresse (1 bis 250) Baud-Rate (0,3 / 2,4 / 9,6 kbps)
Aktualisierungszeit	≤ 100 ms
Konfigurationsmodalitäten	Per Keypad

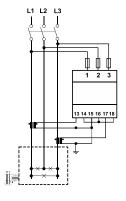

Anschlusspläne

Fig. 5 Dreiphasig mit Nullleiter (4-drahtig). MID

Fig. 6 Dreiphasig ohne Nullleiter (3-drahtig). MID

Fig. 7 Dreiphasig ohne Nullleiter (3-drahtig). MID

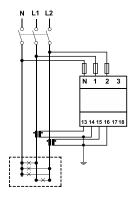


Fig. 8 Zweiphasensystem mit Nullleiter (3-drahtig)

Digitalausgänge/-eingänge

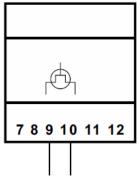


Fig. 9 Output

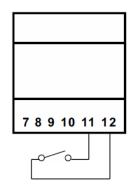
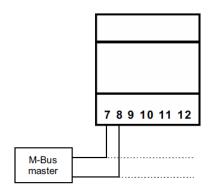



Fig. 10 Eingang

Kommunikation

Fig. 11 M-Bus

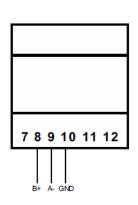


Fig. 12 Port RS485

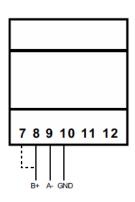


Fig. 13 Letztes Gerät auf RS485

References

Order code

Temperature up to +55 °C/ +131 °F with possibility to select from different communication ports

PEM530 DIN AV5 3X □□

Enter the code option instead of

Code	Options	Description
EM530 DIN AV2 3X		-
	01	Digital output
	S 1	RS485 Modbus RTU
	M1	M-Bus
	X	Non MID models
	PFA	MID models (3P, 3P.n)
	PFB	MID models (3P, 3P.n)
	PFC	MID models (3P, 3P.n)

- PFA: Easy connection, the total energy totalizer (kWh+) is certified according to MID;
- PFB: only the total positive totalizer (kWh+) is certified according to MID. The negative energy totalizer is available but not certified according to MID.

Note: for each measuring time interval, the individual phase energies with a plus sign are summed up to increase the positive energy meter (kWh+), while the others increase the negative one (kWh-).

 PFC: only the positive totalizer (kWh+) is MID-certified. The negative energy totalizer is available but is not MID-certified.

Note: for each measuring time interval, the energies of the individual phases are summed up; according to the sign of the result, the system increases the positive totalizer (kWh+) or the negative one (kWh-).

Kompatible Komponenten von CARLO GAVAZZI

Zweck	Komponenten- Name/Teilenummer	Anmerkungen
Konfiguration des Analysators per Desktop-Appli- kation	UCS-Software	Kostenloser Download unter: www.gavazziautomation.com
Sammeln, Spei- chern und Über- tragen von Daten an andere Systeme	UWP	Siehe relevantes Datenblatt https://www.gavazziautomation.com/images/PIM/DATASHEET/ENG/UWP_ 3.0_DS_ENG.pdf https://www.gavazziautomation.com/images/PIM/DATASHEET/ENG/UWP_ 4.0_SE_DS_ENG.pd